

Jigsaw 5D

1. [Week 4 Slides 47-50] The diagram shows the schematic sample setup for a magic-angle spinning experiment.

a. Define the angles β , θ and ϕ .

β : angle between B_0 and the rotation axis \rightarrow magic angle

θ : angle between B_0 and δ_{zz}

ϕ : angle between δ_{zz} and rotation axis

b. Name three interactions which are averaged or partially averaged by sample spinning.

- dipolar coupling between nuclear spins

- quadrupolar interactions

- anisotropic part of chemical shift

↳ Zeeman effect, scalar coupling and isotropic part of chem shift stay the same

c. For a nucleus with a chemical shielding tensor with axial symmetry, we can write the chemical shift as the sum of isotropic and anisotropic terms:

$$\delta = \delta_{iso} + \underbrace{(\delta_{zz} - \delta_{iso})}_{\text{anisotropic part}} \left(\frac{3 \cos^2 \beta - 1}{2} \right)$$

For which angle β does the anisotropic part average to 0?

$$\Rightarrow \left(\frac{3 \cos^2 \beta - 1}{2} \right) = 0 \Rightarrow 3 \cos^2 \beta - 1 = 0 \Rightarrow \cos^{-1} \left(\sqrt{\frac{1}{3}} \right) \cos \beta = \sqrt{\frac{1}{3}} \quad \beta = 54.74^\circ$$

d. What is the effect of spinning at $\beta = 90^\circ$?

$$\begin{aligned} \delta &= \delta_{iso} + (\delta_{zz} - \delta_{iso}) \left(\frac{3 \cos^2(90^\circ) - 1}{2} \right) \\ \delta &= \delta_{iso} - \frac{1}{2} \delta_{zz} + \frac{1}{2} \delta_{iso} \\ \delta &= \frac{3}{2} \delta_{iso} - \frac{1}{2} \delta_{zz} \end{aligned}$$

→ the anisotropic part is changed by $\frac{1}{2}$

$$\text{conversion: } \delta\nu = 1 \text{ ppm} = 400 \text{ Hz}$$

2. [From Past Exam] [Keeler Section 9.8] The rate constant (in s^{-1}) for a symmetrical two-site exchange has the temperature dependence $k = 10^{13} \exp[-2500/T]$. The rate constant in Hz for which the two peaks merge together is $k_{\text{merge}} = \frac{\pi\delta\nu}{\sqrt{2}}$, where $\delta\nu$ is the chemical shift difference in Hz. Consider a chemical shift difference of 1.0 ppm. Determine the number of peaks in the 400 MHz spectra at the following temperatures:

$$k_{\text{merge}} = \frac{\pi \delta\nu}{\sqrt{2}} = \frac{\pi \cdot 400}{\sqrt{2}} = 888.58 \text{ Hz}$$

a. 98 K

$$k(98 \text{ K}) = 10^3 \exp(-2500/98) = 83.38 \text{ Hz} < k_{\text{merge}}$$

We observe only 1 peak when $k(T) > k_{\text{merge}}$

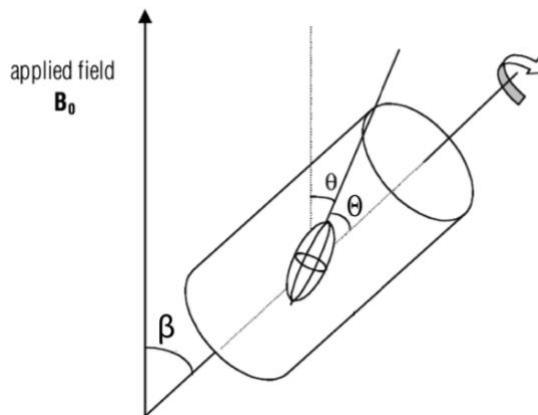
For $T = 98 \text{ K}$ we observe 2 peaks

b. 108 K

$$k(108) = 10^3 \exp(-2500/108) = 884.89 \text{ Hz} < k_{\text{merge}}$$

For $T = 108 \text{ K}$ we observe 2 peaks

But $k(108)$ and k_{merge} are close which means that this 2 peaks are starting to overlap


c. 150 K

$$k(150) = 10^3 \exp(-2500/150) = 577.774.85 \text{ Hz} > k_{\text{merge}}$$

For $T = 150 \text{ K}$ we observe 1 peak

Jigsaw 5D

1. [Week 4 Slides 47-50] The diagram shows the schematic sample setup for a magic-angle spinning experiment.

a. Define the angles β , θ and Θ .

β = magic angle spinning

θ = angle b/w δ_{zz} axis and magnetic field

Θ = angle b/w δ_{zz} and magic angle spinning.

b. Name three interactions which are averaged or partially averaged by sample spinning.

be more specific:

1. anisotropic interactions

2. dipole - dipole coupling (dipolar couplings depend on orientation)

3. quadrupole coupling, for chemicals with spin quantum number $> 1/2$

c. For a nucleus with a chemical shielding tensor with axial symmetry, we can write the chemical shift as the sum of isotropic and anisotropic terms:

$$\delta = \delta_{iso} + (\delta_{zz} - \delta_{iso}) \underbrace{\left(\frac{3 \cos^2 \beta - 1}{2} \right)}_{\text{anisotropic}}$$

For which angle β does the anisotropic part average to 0?

$$\frac{3 \cos^2 \beta - 1}{2} = 0$$

$$\Leftrightarrow 3 \cos^2 \beta = 1 \Leftrightarrow \cos \beta = \pm \frac{1}{\sqrt{3}} \Leftrightarrow \begin{cases} \beta = 0,96 \text{ rad} \\ \beta = 2.19 \text{ rad} \end{cases} = 54.74^\circ \text{ (the "magic angle")}$$

d. What is the effect of spinning at $\beta = 90^\circ$?

$$\delta = \frac{3}{2} \delta_{iso} - \frac{\delta_{zz}}{2}$$

the chemical shift δ will be shifted by $+\frac{3}{2} \delta_{iso}$ and $-\frac{1}{2} \delta_{zz}$

2. [From Past Exam] [Keeler Section 9.8] The rate constant (in s^{-1}) for a symmetrical two-site exchange has the temperature dependence $k = 10^{13} \exp [-2500/T]$. The rate constant in Hz for which the two peaks merge together is $k_{\text{merge}} = \frac{\pi \delta \nu}{\sqrt{2}}$, where $\delta \nu$ is the chemical shift difference in Hz. Consider a chemical shift difference of 1.0 ppm. Determine the number of peaks in the 400 MHz spectra at the following temperatures:

a. 98 K $k = 84.4$
 $k_{\text{merge}} = 888 \text{ Hz}$

$$\left. \begin{array}{l} k = 84.4 \\ k_{\text{merge}} = 888 \text{ Hz} \end{array} \right\} k < k_{\text{merge}} \Leftrightarrow 2 \text{ peaks}$$

b. 108 K $k = 884.9 \rightarrow k < k_{\text{merge}} \text{ 2 peaks}$

Very close to k_{merge} , so you would see
 two peaks in the process of merging

c. 150 K $k = 5.8 \cdot 10^5 \rightarrow k > k_{\text{merge}} \text{ 1 peak}$